Noradrenergic modulation of calcium currents and synaptic transmission in the olfactory bulb of Xenopus laevis tadpoles.

نویسندگان

  • D Czesnik
  • L Nezlin
  • J Rabba
  • B Müller
  • D Schild
چکیده

Norepinephrine (NE) has various modulatory roles in both the peripheral and the central nervous systems. Here we investigate the function of the locus coeruleus efferent fibres in the olfactory bulb of Xenopus laevis tadpoles. In order to distinguish unambiguously between mitral cells and granule cells of the main olfactory bulb and the accessory olfactory bulb, we used a slice preparation. The two neuron types were distinguished on the basis of their location in the slice, their typical branching pattern and by electrophysiological criteria. At NE concentrations lower than 5 microM there was only one effect of NE upon voltage-gated conductances; NE blocked a high-voltage-activated Ca(2+)-current in mitral cells of both the main and the accessory olfactory bulbs. No such effect was observed in granule cells. The effect of NE upon mitral cell Ca(2+)-currents was mimicked by the alpha(2)-receptor agonists clonidine and alpha-methyl-NE. As a second effect, NE or clonidine blocked spontaneous synaptic activity in granule cells of both the main and the accessory olfactory bulbs. NE or clonidine also blocked the spontaneous synaptic activity in mitral cells of either olfactory bulb. The amplitude of glutamate-induced currents in granule cells was modulated neither by clonidine nor by alpha-methyl-NE. Taken together, the main effect of the noradrenergic, presynaptic, alpha(2)-receptor-mediated block of Ca(2)+-currents in mitral cells appeared to be a wide-spread disinhibition of mitral cells in the accessory olfactory bulb as well as in the main olfactory bulb.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuronal representation of odourants in the olfactory bulb of Xenopus laevis tadpoles.

When an odourant enters the nose, olfactory receptor neurons (ORNs) convey information about it to the olfactory bulb (OB), where this information is processed and where the first central representations of the odourant are generated. In this paper we show how odourants are represented by ensembles of OB neurons, in particular mitral cells (MCs) which are the output neurons of the OB. We were a...

متن کامل

Noradrenergic System Increases Miniature Excitatory Synaptic Currents in the Barrel Cortex

Introduction: Neurons in layer II and III of the somatosensory cortex in rats show high frequency (33 ± 13 Hz) of miniature excitatory postsynaptic currents (mEPSCs) that their rates and amplitudes are independent of sodium channels. There are some changes in these currents in neurodegenerative and psychological disorders. Regarding to well known roles of the neuromodulatory brain systems in...

متن کامل

One Special Glomerulus in the Olfactory Bulb of Xenopus laevis Tadpoles Integrates a Broad Range of Amino Acids and Mechanical Stimuli.

The olfactory system senses odors, but not exclusively, as shown over the past years. It also registers other modalities such as temperature and pressure. However, it remains unknown how widespread these sensitivities are across species and how strongly their processing is interconnected with the processing of odors. Here, we present data on the β-glomerulus in the olfactory bulb of Xenopus lae...

متن کامل

Norepinephrine inhibits calcium currents and EPSPs via a G-protein-coupled mechanism in olfactory bulb neurons.

The most pronounced effect of norepinephrine (NE) in the olfactory bulb is disinhibition of mitral/tufted (M/T) cells. Although it has been previously proposed that the effects of NE are mediated by a direct inhibitory action on granule cells, we have demonstrated that NE could exert it effects through inhibition of excitatory synaptic transmission from M/T cells to granule cells (Trombley and ...

متن کامل

Slice culture of the olfactory bulb of Xenopus laevis tadpoles.

We report on the development of a slice culture of amphibian brain tissue. In particular, we cultured slices from Xenopus laevis tadpoles that contain the olfactory mucosae, the olfactory nerves, the olfactory bulb and the telencephalon. During 6 days in roller tubes the slices flattened, starting from 250 microm and decreasing to approximately 40 microm, corresponding to about three cell layer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European journal of neuroscience

دوره 13 6  شماره 

صفحات  -

تاریخ انتشار 2001